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A Network-based Mathematical Programming Approach to Optimal Rostering of

Continuous Heterogeneous Workforces

S. Knighton and J.K. Cochran
I

Department of Industrial Engineering
Fulton School of Engineering, Arizona State University, USA

Abstract. We present a linear programming (LP) approach to a generalized personnel

tour scheduling integer programming (IP) problem based upon a minimum cost network-

flow formulation with specialized side constraints. The formulation simultaneously

incorporates many realistic constraint types and optimally solves the IP tour scheduling

problem for industries with continuous (24 hour) operations and a heterogeneous

workforce with varying availabilities, shift preferences, restrictions on working

consecutive shifts, differing skill-sets, and minimum and maximum shift requirements

per week. Our work is the first to solve this generalized class of IP problems optimally.

Problems of this complexity routinely occur in industry but are computationally

prohibitive to solve. Integer solutions to our tour scheduling problem are found without

branching, bounding, or cutting schemes. This allows the CPLEX interior-point method

to generate solutions orders of magnitude faster than the corresponding integer

program does. Our methodology is demonstrated by finding an optimal tour schedule

for staffing the four main Computer Commons at Arizona State University, a problem of

order 10,000 binary variables and 1,000 constraints in 0.12 CPU seconds. It is also

used to perform the calculations for a generalized staff sizing problem.

Keywords: Rostering, Continuous operations, Heterogeneous workforces, Network

flows, Mathematical programming
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1. Introduction

Personnel scheduling is one of the most difficult, important, and studied problems

in operations research. The optimal choice of the number of employees required to

meet customer demand, shift start and stop times, daily lunches and breaks, and the

assignment of the adequately skilled employee to the best shift is a classic

combinatorial optimization problem. Managers who attempt to manually solve the

personnel scheduling problem expend many valuable work hours to find even a feasible

solution which has little probability of being optimal based on any objective function.

Sub-optimal scheduling increases an industry's tangible costs, not only through the

consumption of a manager's time, but also through the misallocation of shifts to meet

customer demand and through employees staffing shifts for which they are not qualified.

Furthermore, a sub-optimal schedule will increase intangible costs such as lower

employee moral from dissatisfaction with a poorwork schedule. Eliminating these costs

is an easy way to increase the profitability of any business.

Personnel scheduling is a necessary chore associated with any organization

employing people to get work accomplished. Some organizations that employ a

professional workforce during traditionally scheduled business hours find the personnel

scheduling problem a trivial concern. However, industries that rely on a large portion of

part-time employees with highly constrained availabilities (work hours) and require

staffing for the entire day and evening hours or, in particular, continuous (24-hour)

operations have a much more challenging problem. Such industries include fast-food

restaurants, hotels and resorts, grocery stores, customer assistance telephone services,
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hospitals, and others. The combined salary cost of this segment of the economy is

quite large. A timely and optimal solution to their personnel scheduling problem will

save managers valuable time, meet customer demand at minimum labor cost, and

increase worker moral by matching each employee to the best shift possible. This

article presents an extremely fast, computationally efficient, and optimal network-flow

based linear programming solution for the extremely challenging integer programming

problem of rostering a continuous heterogeneous workforce with realistic constraints.

Personnel scheduling is generally decomposed into more tractable sub-

problems. The three primary sub-problems are demand modeling, shift selection, and

employee tour scheduling or rostering. Demand modeling determines the number of

employees required on duty during a given time interval to satisfy customer needs.

Forecasting and queuing theory are the primary tools applied to demand modeling. A

typical chart of the number of employees required, illustrating the results of demand

modeling, is shown in Figure 1.1.

The second primary personnel scheduling sub-problem is shift selection. Shift

selection assigns consecutive hour shifts to satisfy the customer demand while meeting

organizational and regulatory requirements for shift lengths, breaks, and mealtime

allowances. The objective of shift selection is generally to minimize the number of

hours scheduled that exceed customer demand. Figure 1.2 shows an example of a set

of shifts that will optimally cover the number of employees required in Figure 1.1.
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The third personnel scheduling sub-problem is tour scheduling also know as

employee rostering. Tour scheduling assigns individuals to specific shifts detailed

during shift selection. A heterogeneous workforce is a collection of personnel who have

significantly different availabilities, skill sets, and seniorities. Tour scheduling a

heterogeneous workforce must consider all of these differences and optimally match the

personnel with the best shift possible for which they are eligible. Additionally,

considerations for individuals working a minimum and maximum number of shifts per

week and insuring adequate rest between shifts for industries with continuous (24-hour)

operations are critical to an optimal tour schedule. Heterogeneous and continuous

workforces are realistic considerations for many industries, as previously noted.

Employee shift preferences and management employee weighting comprise the

objective function.

This methodology provides several original contributions to the personnel

scheduling literature. The following list summarizes the advancements proposed by this

research.

"* Provide a solution methodology that simultaneously accounts for

variations in employee availabilities, skill sets, and preferences.

"* Provide a methodology that rosters employees for continuous operations

by allowing for rest hours between shifts.

"• Provide a network-flow based formulation that rapidly solves the tour

scheduling problem, providing integer answers without any need for

branching, bounding, or cutting schemes.
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This article is organized in the following manner. Section 2 contains a survey of

the pertinent literature and important previous work accomplished in personnel tour

scheduling. Section 3 details the tour scheduling problem at Arizona State University

for computer lab technicians. Our methodology is general, but we feel that for realism

and clarity we will introduce our case study early. Section 4 provides the proposed

solution method and model. Section 5 shows the results of the methodology as applied

to the case study as well as applied to larger instances of the IP tour scheduling

problem. Chapter 6 provides conclusions and recommendations.

2. Literature Survey

A vast amount of scholastic work has been accomplished on the personnel

scheduling problem. This work has been documented in a wide array of refereed

journals, conference proceedings, and lecture notes. Personnel scheduling spans a

wide range of problem instances, specific applications, and solution techniques and

methodologies. Many survey papers of the pertinent literature in the area have been

written. Some of the most extensive and most recent include Ernst, et. al. (2004a),

Ernst, et. al. (2004b), and Alfares (2004).

2.2 Application Areas

Personnel scheduling has a broad range of application. In their article, Ernst, et.

al. (2004b) survey over 700 papers in the personnel scheduling literature. They define

application areas and catalog prior work in each application area. We refer the reader

to this article for additional detail of the categorization. The articles from each
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application area may concentrate on all or part of the problem instances described as it

pertains to the specific area.

The application areas pertinent to our research are characterized by flexible

demand, a heterogeneous or mixed workforce, possible continuous operations, and

personnel preference consideration. Alfares (2004) defines a mixed workforce as

employees having differing "skill level, learning rate, wage, availability, and work hours."

Continuous operations are characterized by demand requirements 24 hours a day.

Important application areas of interest as defined by Ernst, et. al. (2004b) are Hospitality

and Tourism, Financial Services, and Sales. Although these areas represent a

significant proportion of economic activity, they form only a small portion of the

personnel scheduling literature, only 16 of the over 700 papers surveyed. Furthermore,

the subset of these papers examining the tour scheduling problem is a further reduction

of the papers surveyed.

2.2.1 Hospitality and Tourism Tour Scheduling

Hospitality and tourism industries as defined include "hotels, tourist resorts and

restaurants" (Ernst, et. al. 2004b). These industries have flexible demands and night

and weekend shift requirements as well as employees with varying skill sets. Eveborn

and Ronnqvist (2004) propose an elastic set-partitioning model and a branch-and price

algorithm to solve the tour scheduling problem. The methodology is imbedded in a

general scheduling software package called SCHEDULER. Glover and McMillan (1986)

employ a tabu search and Thompson (1996) makes use of simulated annealing.

Loucks and Jacobs (1991) begin by using a goal programming approach and then solve

the corresponding integer program using a two-phase heuristic. A heuristic approach
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combined with a tabu search is developed by Litchfield, Ingolfsson, and Cheng (2003)

to roster a restaurant. Finally, Love and Hoey (1990) define a mixed-integer program

and solve the tour scheduling problem using a minimum cost network flow simplex

algorithm. This paper is of particular interest and will be discussed in further detail.

2.2.2 Financial Services Tour Scheduling

Financial services tour scheduling is applied to staffing "clerical workers in

service industries such as banking and insurance." Again, the industry is characterized

by flexible demand and by full and part-time workers. Li, Robinson, and Mabert (1991)

and Mabert and Raedels (1977) use heuristics to roster workers, the former considering

differing skill sets. Mabert and Watts (1982) propose simulation to solve a set-covering

formulation and Mould (1996) develops a spreadsheet decision support system (DSS)

to allow employers to explore different tour schedules.

2.2.3 Sales Tour Scheduling

Retail sales tour scheduling has received the least amount of attention in the

literature. Glover, McMillan, and Grover (1985) develop a DSS that uses a heuristic and

Haase (1999) shows a column-generation technique to solve an integer-programming

formulation.

2.3 Solution Techniques and Methodologies

The most important aspect of this literature review is to detail the prior work in

methodology to solve personnel scheduling problems. Ernst, et. al. (2004b) show a

break down of solution techniques and methodologies as was shown for various

application areas. The following table shows the techniques and the number of papers

using that methodology. Papers employing more than one solution technique appear in
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multiple categories. The methodology of particular interest to our research in this

article is network flow modeling. The following sections will show the application of the

network flow modeling literature to the personnel scheduling problem instances with a

concentration on the tour scheduling problem.

2.3.1 Network Flow Tour Scheduling (Airline, Mass Transit, Nurse Applications)

Network flow models have been used extensively in the airline industry. Yan and

Chang (2002) and Barnhart, et. al. (1994) solve shortest-path network problems in a

column generation formulation to pair airline crews to flight schedules. Column

generation using network models to price new columns is proposed by Mason and

Smith (1998). Mellouli (2001) uses a "state-expanded aggregated time-space network"

to solve airline and rail crew scheduling. Nicoletti (1975) uses assignment sub-

problems within a constructive heuristic, and Tingley (1979) sequentially solves

assignment and matching problems to roster airlines.

Public and mass transit systems are also well addressed in the tour scheduling

literature. Patrikalakis and Xerocostas (1992) develop an approach that uses a network

flow problem with side constraints to schedule vehicles for the Athens Area Urban

Transport Organization. Carraresi and Gallo (1984) combine a matching approach and

Lagrangean relaxation for crew rostering in mass transit. Borndorfer et. al. (2001) apply

a column generation technique using network flow sub-problems for duty scheduling in

European public transit. Ball and Benoit-Thompson (1988) sequentially solve shortest

path and matching problems within a Lagrangean relaxation based heuristic.

Banihashemi and Haghani (1991) propose to solve mass transit crew scheduling using

a multi-commodity flow model.
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Another popular application area for network flow modeling is nurse

scheduling. Dowsland and Thompson (2000) mix knapsack, network flow, and tabu

search techniques to develop nurse rosters. Jaumard, Semet, and Vovor (1998) solve

shortest-path network sub-problems within a column generation integer program. Millar

and Kiragu (1998) develop cyclic and acyclic work schedules for nurses using a

shortest-path problem with side constraints. Finally, Moz and Pato (2004) solve a nurse

re-rostering problem using multi-commodity flow models.

Although the use of network modeling has been well explored in the literature for

airline, mass transit, and nurse tour scheduling, these problems differ in nature from our

problems of interest. In general, airlines, mass transit, and nursing applications are not

characterized by flexible demand and additionally employ a homogeneous workforce

where each employee has similar availabilities, skill-sets, and work hours. These

differences dramatically affect the formulation of the tour scheduling problem.

Additional constraints needed to model employee availability, minimum and maximum

work hours, consecutive shift restrictions, and skill-set eligibility are examples of the

dissimilarities.

2.3.2 Network Flow Tour Scheduling with a Heterogeneous Workforce

Tour scheduling a work force with varying daily and weekly availabilities, skill-

sets, minimum and maximum work hours, and wage rates has not been given a

proportionate amount of attention in the personnel scheduling literature. Furthermore,

only Love and Hoey (1990) attack this problem from a network flow approach. Love

and Hoey define a mixed-integer linear program (MILP) for shift scheduling and tour

scheduling for a fast-food restaurant. They then decompose the MILP into two sub-
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problems. This is the same approach that we will take. The first sub-problem defines

the shifts needed to cover demand. The second sub-problem minimizes the rest of the

objective function. As Love and Hoey (1990) state: "each column has at most two

nonzero entries and these equations can be constructed such that each column with the

two nonzero entries has one +1 and one -1, so this second sub-problem can be solved

as a minimum cost network flow problem." They propose solving these sub-problems

using network simplex algorithms.

Although Love and Hoey (1990) show that a tour scheduling problem can be

solved with a minimum cost network flow, there are limitations to the complexity of the

heterogeneous problem that can be solved with their formulation. As acknowledged by

the authors, this formulation does not perform well for continuous operations.

Additionally, there is no discussion of employees who have differing skill sets or the

more complex case of employees with overlapping and differing skill sets. A more

robust tour schedule must take into account the specific skill-sets of the employees and

the skills required per shift.

Our methodology uses an expanded network model to allow for varying skill sets

and specialized side constraints to manage continuous operations. As we will see, the

expanded network formulation with specialized side constraints forms a linear program

(LP) whose solutions are integer.

3. A Case Study - ASU Computer Lab Technician Tour Scheduling

There are four computer labs at Arizona State University(ASU): the Atrium, BAC,

GWC, and ECG. Each lab is staffed by technical experts (typically enrolled ASU
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science and engineering students), who assist other students using the computers in

the lab. Currently, the Technology Support Analyst Principal (TSAP) is tasked with

scheduling the technicians to meet the historic demand for each lab based upon time of

day. Each technician has a subset of the four labs in which they are qualified to work.

The TSAP currently schedules over fifty technicians to the various labs by hand. He

must take into consideration the demand for technicians as a function of day and time,

availability and non-availability of the technicians, shift restrictions and maximum hours

per week, minimum hours per week, as well as the preferences and qualifications of the

technicians for particular shifts. Each such effort requires 2-3 days and a satisfactory

solution is the first feasible one found.

Each lab has its own operating hours and staffing requirements. For example,

Table 3.1 depicts the operating hours and staff requirements for the Atrium. Although

there must be no staff during closed hours, and at least one technician working each

operating hour, there is some flexibility regarding the staffing levels during operating

hours. Staffing the lab in excess of the requirements in the table will result in excess

costs to the university. Staffing the labs at a lower level is not allowed.

7a 8a 9a 10a 11a 12p ip 2p 3p 4p 5p 6p 7 p 8p 9p 10p 11p

Sunday 3 4 4 5 5 5 4 4 3 3 4 4 4 4 3

Monday 3 3 3 4 4 5 5 5 4 4 3 3 4 4 4 4 3

Tuesday 3 3 3 4 4 5 5 5 4 4 3 3 4 4 4 4 3

Wednesday 3 3 3 4 4 5 5 5 4 4 3 3 4 4 4 4 3

Thursday 3 3 3 4 4 5 5 5 4 4 3 3 4 4 4 4 3

Friday 3 3 3 4 4 5 5 5 4 4 3 3 4

Saturday 3 3 3 4 4 4 4 4 4 4 4 3 3 3 3

Table 3.1 Lab technician requirements (Atrium) based on hourly demand
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Each technician has his/her own availability profile and preferences among

those hours. The minimum and maximum shifts per week are developed by the TASP

after his consultation with each technician.

A two-phase approach to the tour scheduling problem for ASU computer labs is

proposed as depicted in Figure 3.1. In Phase 1, we select a set of shifts to cover the

staffing requirement for each of the four labs. The scheduler can indicate shift length

priorities in order to bias the model in favor of specific shift lengths. For example the

scheduler can specify a preference for 6-hour shifts as opposed to 3-hour shifts by

assigning them different weights. Additionally, benefits arise from the fact that selecting

the shifts for a single lab has no effect on which shifts should be selected for the other

three. This independence allows for the selection of shifts for each of the four labs to be

done individually, resulting in four smaller Phase 1 models.

Phase 1
...Candidate Shifts

Shift Penalties J 71
,I

S'hift Selection Shift Selectionl I hilt Selection Shift 'Selectionl
trium) (BA ) I G....U I "I.

Technician Preferences Phase 2

Techncian Sen3 To- s mt

Technician Skill Sets
Shift Assignment

T echnician Rest Rqmlt.

Figure 3.1 Two-phase methodology for shift selection and rostering
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In Phase 1, we consider all reasonable shift lengths over the planning horizon.

The objective of this phase is to select a set of shifts that covers the lab requirements,

as well as minimizes the sum of "shift penalties". Shift penalties are assigned based on

the scheduler's preference for a particular shift length. A penalty of 1.0 signifies that no

extra weight is given to the hours in a given shift length. Phase 1 then minimizes the

total cost of selecting individual shifts, where the cost of each shift is the product of the

number of hours and the scheduler's penalty factor for the shift. The penalties for shift

lengths solicited from the TSAP for our case study are contained in Table 3.2.

Shift Length Penalty Factor Cost

3 1.05 3.15

4 1.00 4.00

5 1.00 5.00

6 1.00 6.00

7 1.10 7.70

8 1.15 9.20

Table 3.2 Shift penalties used to in Phase 1 set covering problem

For example, consider the two possible shift selections with regard to Saturday

mid-day lab requirements in Figure 3.2 below. The solutions show the shift lengths

chosen as well as the number of employees on each shift. The value of solution 1 is

53.45, whereas the value of solution 2 is 59.9. Solution 1 happens to be the optimal



15
solution. Both solutions cover the demand profile exactly, but Solution 1 uses shift

lengths preferred by the manager.

Saturday 3 3 13 4 14 4 4 4 4 14 4 3 3 3 3

solution 1 shift 1 (3) shift 2 (4) shift 3 (4) shift 4 (3)

shift 1 (3) shift 2 (3)
solution 2

shift 3 (1)

Figure 3.2 Example of effect of preference on two distinct shift definitions

The Phase 1 problem is not computationally challenging. A set-covering integer

program (IP) is directly used to solve Phase 1. It selects the optimal set of shifts to

cover customer demand based on shift length preferences. In Phase 2, we must assign

employees to these shifts, subject to employee preferences by hour, availabilities, skills,

rest periods as well as some notion of employee preference by management. This is a

very difficult problem to solve efficiently and is the focus of this article.

4. Proposed Tour-Schedule Solution Method and Model

The tour-scheduling problem is inherently a binary set-covering problem.

Therefore, as problem size increases, the efficiency of the associated IP decreases

rapidly. However, we have developed a formulation of the problem as a minimum cost

network-flow, using an arc capacity method, so that the resulting network structure

always provides integer binary answers. The network structure can easily be written as

an LP and solved using fast solution algorithms such as the CPLEX interior point

method. Solutions of this formulation do not require any branching, bounding, or cutting
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schemes to find integer solutions - the integer solutions are a consequence of the

formulation method. Therefore, very large problem instances can be solved in a

computationally insignificant amount of time compared to the corresponding IP solution.

Figure 4.1 shows our formulation of our generalized tour-scheduling problem as a

minimum cost network-flow.

Mon

Demand S u u<=MaxShifts"k" du<=1 I>=MinShifts
0 0.' 0

Demand ---- -- DE

..._ue ... ..................................................... 0

Demand Sj,k,d+7Demand - .@

Here an~kd dntsj shft umbr reqirnsklsek and o a d i epoe

n o

0 0 00 ."0 00

Demand ,_ ....
Wejjmýkd7 ----- Sun ein

F g r 4.1.......... Net or .................... of -........... Ph s o rs h d ln r be m

The number of employees needed for each shift node flows from the Demand

arc. Each shift node has an edge to each qualified and available employee node. The
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shift-to-employee arc is capacitated at 1, meaning only one of the required staffing for

a shift can be assigned to a single employee. Each employee then flows their daily

work assignment to the employees' daily-total-node, D. This arc is capacitated at 1,

meaning each employee can work only one shift per day. Finally, the employees' daily-

total-nodes channel the flow to the employees' weekly-total-node which contains the

capacities to enforce min and max shifts per week.

The balance equations for the above network flow formulation are:

sJ,k,dei = demand for all j,k,d (4.1)

sJ,k,de = Ddi for all id (4.2)
j,k

ZDd,i _< max number _ of shifts for all j (4.3)
d

"Dd,i > min numberof oshifts for all j (4.4)
d

Dd,, <1 for all i,d (4.5)

Constraint set 1 requires that the demand for a number of employees for each

type of shift is met. Set 2 totals the shifts per employee for each day and requires that

the total be less than or equal to 1 in constraint set 5 (no employee works more than

one shift per day, but remember that the shift length is a variable). Constraint sets 3

and 4 require that the minimum and maximum numbers of shifts per week are met for

each employee. The following three sub-sections describe how our model incorporates

all the constraints needed to create a tour-schedule for a real world business, including

a heterogeneous work force and incorporate consecutive shift restrictions.

4.1 Consecutive Shift Restrictions

Adequate rest between consecutive shifts is a requirement for any realistic tour-

schedule of continuous operations. Industries that are only open for an 8-hour day have
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tour-schedules that implicitly contain adequate rest. However, when scheduling an

industry with continuous or 24-hour operations, restrictions on consecutive shifts is a

requirement for any realistic tour-scheduling formulation. Love and Hoey (1990) and

Loucks and Jacobs (1991) note the need for consecutive shift restrictions and state the

lack of such restrictions as limitations to their tour-scheduling models. Our formulation

allows for specialized side constraints to accommodate continuous operations.

As input in any specific application, we use the appropriate industry standard for

how much time is required between the start of shift j and the start of the next shift. This

leads to a matrix of shifts, J, that conflict with each other in the sense that an employee

assigned to work shift j cannot be scheduled to work any shift conflicted with shiftj. The

following constraint is added to constraints 1-5 above to accommodate consecutive shift

restrictions.

E s,k,dei <1 for all conflicted shifts (4.6)
jej

Surprisingly, all of our empirical experience indicates that these side constraints

do not destroy the integrality of the solution to the minimum cost network flow.

4.2 Employee Availabilities and Varying Skill Sets

Many industries have employees with heterogeneous availabilities. For example,

service industries often employ younger, part-time employees who have restrictions on

their time due to schooling or other activities. Our model can be modified to

accommodate such heterogeneous availabilities. We simply remove the network arc

from a shift to an employee who is not available during the hours encompassing that

shift. No flow units can travel from that shift to the employee and consequently the

employee is not assigned to that shift.
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Similarly, it is often the case that many service industries have different skill

requirements needed during a particular shift. If an employee does not possess the

required skill for a particular shift, the arc from the shift to the employee is removed from

the network. If the employee has multiple skill sets, the arc from the employee to all

shifts within their set is contained within the network.

This is an important aspect to the efficiency of the tour-schedule. Many

examples within the tour-scheduling literature schedule only one department within the

industry at a time. Therefore, the employees assigned to that department can be

scheduled only within that department and there is no mechanism to schedule that

employee across departments. This could lead a department to over-staffing costing a

business extra payroll. We have no such restriction.

Removal of the two types of arcs described above are easy to program. They

have no effect on the integrality of solutions from the LP-network solution. This is

because the resulting network is still of minimum cost flow form.

4.3 The Objective Function - Employee and Manager Preferences and a Perturbation

The objective function of the constraint set described above can now be defined.

First, each employee scores each shift, on a preference scale, based upon their desire

to work at that time. Any scale could be used, but we have found in practice that one

based on a scale of (0,100) allows for adequate granularity. The preliminary objective

function is then:

MAX I Si,k,dei "pref(sj,k,dei) (4.7)
j,k,d,i
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Additionally, we allow the manager to express their preferences of employees

on shifts taking such factors as seniority or job performance into account. We call these

preferences "rewards". The larger the reward on a scale of (0,100), the more likely the

model will select that employee for desired shifts (and it certainly helps to break ties).

The objective function becomes:

MAX • SJ,k,dei * [pref (si,kade,) + Re ward (sjkd e)] (4.8)
j,k,d,i

Finally, it is possible for the algorithm to find an alternate optimal solution that

contains fractional employee assignments (there is always an integer solution). This

occurs when the preferences of two employees for a particular shift are equal and

neither is violating a consecutive shift restriction or a maximum number of shifts per

week constraint. To remove this non-integer alternate optimal solution effect from the

view of manager we add to the objective function a small random value, e, whose

magnitude is chosen to range from (0,1) based on the magnitude of the preference and

reward scales of (0,100). The random value is not reported as part of the final objective

function value, merely used to remove the possibility of non-integer alternative optimal

solutions

MAX j,k,dei ref(s,k,dei) + Re ward(e,)]+± (49)j ,k,d ,i

Data organization to support these calculations are straightforward. A

spreadsheet is used as the input data file. A Visual Basic macro then writes the linear

program in CPLEX .lp input format. This macro runs almost instantaneously. The

output file is then be given to CPLEX for optimization. The ease of changing data in the
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input data file, the speed with which the output file is written, and the speed with

which the problem is optimized (more on this in the next section) allows the user to

study a wide variety of problem instances and conduct sensitivity analysis. Figure 4.2

shows an example of the input data file format. The data file for the ASU computer lab

problem has 195 rows of shifts with 50 columns of preferences (the sum of employee

and manager values).

Emp Number 1 2 3 4 5 6 7 8 9 10
Emp Skill Set All All All All All All All All All All
Reward High High High High High High High High High High

Shift Shift Com Shift Start
Day ID Number Lab Demand Time Employee Priority

1 56 1 Atr 1 9 0 0 0 0 0 0 0 0 0 0
57 2 Atr 1 9 0 0 0 0 0 0 0 0 0 0
58 3 Atr 1 9 0 0 0 0 0 0 0 0 0 0
64 4 Atr 1 10 0 0 0 0 0 0 0 0 0 0
75 5 Atr 1 12 264 242 270 221 231 292 275 206 221 277
81 6 Atr 1 13 299 228 295 260 295 269 232 203 291 286
88 7 Atr 1 14 227 297 251 269 248 257 273 291 248 200
99 8 Atr 1 16 226 205 299 256 279 276 201 253 274 288

111 9 Atr 1 18 257 260 240 225 214 221 269 248 245 300
118 10 Atr 1 19 226 213 267 229 282 273 276 217 218 250
123 11 Atr 1 20 285 245 300 281 276 278 243 272 277 242
129 12 Atr 1 21 243 255 228 284 223 206 238 209 230 206

Figure 4.2 Input Data File

In the next section, our model of the ASU Computer Labs Phase 2 tour-schedule

as well as other larger problem instances are solved - in orders of magnitude less time

than the corresponding IP.

5. Computational Results

5.1 Tour-Schedule for ASU Computer Labs

The model described in Section 4 was applied to the real world example of

scheduling student technicians at ASU Computer Labs. We worked closely with a



22

scheduler using the data for shift requirements for the spring semester of 2003. The

four labs combined have 195 distinct shifts that must be covered. In order to protect

student privacy, student technician preferences and availabilities are generated from

typical behaviors. We generated a class schedule for 50 students, which is the current

number of technicians employed. The class schedules consist of either morning

classes (unavailable from 0800-1200), afternoon classes (unavailable from 1200 -

1600), or evening classes (unavailable from 1600-2000). Each student technician is

assumed to attend a typical student-worker load of three different classes per week,

with each class meeting twice a week. Therefore, each student is unavailable for six

time periods per week and available all weekend. We ran five distinct models, where

each model adds one more of the real world constraints described in Section 4.

Solutions used CPLEX 8.1 on a 2.4 GHz PC with parallel processors and 1 Mb of RAM.

Model CPU Time Optimal

(sec) Objective

Complete Availability, Technician Preferences 0.03 38625

Restricted Availability, Technician Preferences 0.04 38495

Restricted Availability, Technician Preferences, 0.29 38452
Consecutive Shift Restrictions

Restricted Availability, Technician Preferences, 0.70 38091
Consecutive Shift Restrictions, Varying Skill Sets

Restricted Availability, Technician Preferences, 0.93 43088
Consecutive Shift Restrictions, Varying Skill Sets,
Preference + Reward

Table 5.1 Results of the Tour-Schedule Model for ASU Computer Labs
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In each case, a feasible solution to the tour-scheduling problem is solved in a

fraction of a second, rather than seconds or minutes. Why is this computational

improvement important? In general, it means that variations on optimization problems

may be run in real-time that allow the manager to see the effect of changes of interest.

In the ASU Computer Lab case study, the following are examples of such uses:

* Re-rostering when someone is unavailable, or whose schedule changes

(dropping and adding classes after the initial schedule, for example).

• Introduction of the student confidential information, after an initial basic schedule

is built by developers.

"* Determination of which types of employees are needed to improve coverage and

even staff sizing (which we cover in detail in Section 5.3).

"• Study the effects of rewards chosen by the manager and preferences selected by

the students.

These types of analyses are essentially impossible in the manual system, yet

require only seconds for a re-roster up to hours for a sensitivity analysis. These time

periods are a small fraction of the 2-3 days spent just to get one feasible schedule

manually using the current practice. They are also a fraction of the time needed if

solutions were obtained by a brute-form IP as we can see from Table 5.1. The benefits

of our method increase as problem size grows larger. The ASU example has about

10,000 binary variables and 1,000 constraints, but is in no way a challenge to our

method. In the next sub-section we look at the computational behavior of larger

problem instances. Those larger problems are randomly generated problems, not from

our case study, but containing the same types of features.
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5.2 Computational Efficiency for Larger Problem Instances

Four larger problem instances were solved using realistic yet nominal data. The

computational effort is summarized in Table 5.2 below. The ASU computer lab problem

is on the order of the third problem listed. Our formulation continuers to solve the tour-

scheduling problem in an insignificant amount of computer time even for very large

problem instances of 420 distinct shifts (about the number of shifts in three months with

a granularity of 4 hours on shift definition) and 80 employees. Our formulation is

completely adaptable to scheduling additional time periods and, as we can see below,

the formulation will solve these larger problems very quickly.

Network-Based LP Integer Program
Number of Number of Variables Constraints CPU Time Variables Constraints CPU Time

Shifts Employees (continuous) (sec) (binary) (sec)
35 10 420 205 0 350 90 0.02
70 20 1540 430 0 1400 180 0.07
175 50 9100 1225 0.06 8750 450 1.53
420 100 42700 3020 0.5 42000 1040 135.98

Table 5.2 Computational Results for Larger Problem Instances

Figures 5.1 and 5.2 illustrate the emerging gap in computational time required to

get a solution between our formulation, Network-based Linear Program (NBLP), and a

brute-force IP. Our formulation will be able to solve much larger problems before the

computational time becomes excessive. This will allow businesses to schedule months,

quarters, or years at a time.
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Figure 5.2 Computational Time Comparison versus the Number of Constraints

5.3 Staff Sizing Application

The speed at which the formulation can be solved and the ease with which real

world constraints such as employee availability, consecutive shift restrictions and

varying skills sets are incorporated, allows for an additional important result for

industries with heterogeneous workforces. Industries that are looking to streamline their



26

employee payrolls or are opening a new facility can use the algorithm to predict the

minimum number of staff required to fill shifts based on customer demand.

Given a level of employee availability, the industry standard for rest between

consecutive shifts, and the number of skills required, a set of employee data can be

generated. The formulation can then be solved for this case and the minimum number

of employees that covers that definition of demand can be found by running the model

until a feasible solution. Repeating this for several sets of employee data, an actual

minimum number of employees needed to staff the business will become apparent.

Below is an example of how our formulation can be used to generate the

minimum number of employees required. The example problem instance contains 49

shifts (7 shifts per day for a week) and 15 employees. The table shows employee

requirements for a nominal industry as employee availability mix reduces from full

(100%) availability to half time (50%) availability. The availabilities are generated

randomly for this example, so 50% availability would mean each employee is randomly

unavailable for half of the hours each week. In Table 5.3, below each availability is the

minimum number of employees required for that problem instance. An average,

standard deviation, and a minimum employee to shift ratio is calculated.

Availability 100% 90% 80% 70% 60% 50%
Minimum Trial 1 10 11 12 13 15 15
Number Trial 2 12 13 14 14 15
of Trial 3 11 12 14 14 16
Employees Trial 4 11 13 14 15 15

Average Minimum 10 11.25 12.5 13.75 14.5 15.25
Standard Deviation 0.500 0.577 0.500 0.577 0.500

Employee/Shift Ratio 0.204 0.230 0.255 0.281 0.296 0.311

Table 5.3 Employee Requirements as a Function of Employee Availability
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As expected, as the time each employee has available decreases the

minimum number of employees required to staff the demanded number of shifts

increases. This formulation leads to an employee/shift ratio. Given the parameters of

the proposed business, the entrepreneur can look at varying scenarios, chose as

conservative an estimate as desired and find the ratio of employees to shifts from a

graph like the one shown below. If circumstances change as the business moves

closer to opening or in streamlining processes, the graph can be consulted to determine

a new level of staffing ratio based upon any new level of employee availability. Similar

graphs could be constructed varying consecutive shift restrictions or skill sets.
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Figure 5.3 Employee to Shift Ratio Based Upon Employee Availability

6. Conclusions and Recommendations

Our formulation of the tour-scheduling problem allows a scheduler to incorporate

many of the real world constraints inherent in an implementable tour-schedule. The

scheduler can consider heterogeneous employee availabilities, varying skill sets,
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consecutive shift restrictions, and seniority or job performance incentives.

Additionally, the formulation solves very large problem instances in a computationally

insignificant amount of time compared to the corresponding IP solution. This allows the

scheduler to reschedule often or consider new information that would require additional

tweaking of the tour-schedule.

The formulation was applied successfully to a real world example involving a very

heterogeneous workforce and continuous operations. The Technology Support Analyst

Principal (TSAP) for the ASU computer labs indicated that it took him 2 to 3 days per

semester to schedule the computer labs. Due to the high constraint on the availabilities

of the technicians it is a very laborious process that the TSAP does manually with the

aid of a spreadsheet for recording the tour schedule. By hand, it is very difficult to

ensure that students are given a proper amount of rest between shifts. Shifts that occur

consecutively or within a minimum number of hours are deemed to be conflicted and not

scheduled to the same technician. The proposed model can accommodate any

minimum window of rest required by the scheduling organization and can, therefore,

schedule businesses with continuous operations.

Finally, we took advantage of the computational efficiency of the model and

solved many problem instances to generate a minimum employee to shift ratio. Such

an analysis would be very valuable to any business seeking to cut payroll or to an

entrepreneur who is looking to open a new business and needs to determine

appropriate staffing levels dynamically as conditions change, or in the planning stages

of a business that does not exist yet.
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In all cases we considered, the inclusion of heterogeneous workers and

mandated rest breaks in a continuous schedule add realism to the tour scheduling

problem.
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